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Motivation

• DFT is presently the most successful and the most popular 
method to compute the electronic structure of matter

• It works for atoms, molecules, solids, liquids and plasmas

• DFT provides both the scientific justification and the basis for 
understanding the meaning behind the algorithms used in the 
computer codes

e.g. DFT predicts molecular structures, vibrational 
frequencies, atomization energies, ionization energies, 
electric and magnetic properties, reaction paths, etc.



Walter Kohn receiving 
Nobel Prize (1998)

The number of annual citations to one or both of the
foundational of density functional theory (DFT). Both papers are 
among the most highly cited in the history of Physical Review 
(Data from the Web of Science.)

The Density Functional Theory was introduced in two papers: 

• Inhomogeneous Electron Gas, P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

• Self Consistent Equations Including Exchange and Correlation Effects, W. Kohn and 

L. J. Sham, Phys. Rev. 140, A1133 (1965).

Motivation



Elementary quantum mechanics

• The ultimate goal of most approaches in solid state physics and 
quantum chemistry is the solution of the time-independent, non-
relativistic Schrödinger equation

• For the simple case we can solve the Schrödinger equation exactly 
to get the wave function of the system !i

• Then we can determine the energy states of the system Ei
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Elementary quantum mechanics

• In quantum mechanics, the physical state of an electron is 
described by a wave function. The quantum mechanical wave 
function contains, in principle, all the information about a given 
system.

• The wave function is a mathematical expression (not measurable).



Elementary quantum mechanics

• The wave function is a mathematical expression (not measurable)

• Born interpretation - the square modulus of the wavefunction,  
∣ "i ∣2 , at any given point is proportional to the probability of 
finding the particle at that point. (The quantity ∣ "i ∣2 is thus a 
probability density.)
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Elementary quantum mechanics

The Schrödinger equation ˆ
i i iH Ey y=
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Elementary quantum mechanics
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It is impossible to solve the Schrödinger equation for a N-body system

we must use some approximations

DFT is  a method of obtaining an approximate solution to the Schrödinger 
equation of a manybody system



Born-Oppenheimer approximation

Born-Oppenheimer approximation:  

• motion of ions and electrons can be separated

• ions are fixed in space 
(ions are very massive in comparison to the electrons, nuclei move much slower than the 
electrons, the kinetic energy of the ions is much smaller than that of the electrons and their 
potential energy is merely a constant)

The ions kinetic energy is zero and their potential energy is constant.



Born-Oppenheimer approximation

The Hamiltonian for electrons reduces to :
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The total energy is then the sum of electron energy and the constant 
nuclear repulsion.
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electrons - ions

the only term that distinguishes
one material (e.g. alloy) from another

determines the wavefunction, which in turn 
determines the electron density n(r) and the 
total energy. The energy is thus a functional of ,r̂ RV

Hohenberg, W. Kohn, L. J. Sham

Kohn proposed a radical inversion of that thinking !

Is it possible that the total energy depends only on the electron density n(r)?

If it were true, knowledge of n(r) was sufficient to determine the external potential, 
the many-particle wavefunction, and all the ground-state properties



P. C. Hohenberg, W. Kohn, L. J. Sham, Adv. Quantum Chem. 21, 7 (1990)

Hohenberg - Khon theorems

1st theorem

For any electronic system in an external potential Vext, this potential is 
determined uniquely, to within a constant, by the ground state density n0(r)

• The Hamiltonian is thus fully determined à the many-body wave 
functions for all states are determined

• All properties of the system are completely determined only by the 
ground state density



Electron density

Electron density  n(r) is a representation of the probability of 
finding an electron in a specific location (volume element).

• n(r) is a non-negative function of only the three spatial variables which vanishes at 
infinity and integrates to the total number of electrons:

• n(r) is an observable and can be measured experimentally, e.g. by X-ray diffraction

( ) 0 ( )n r n r dr N®¥ = =ò
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Hohenberg - Khon theorems

Universal functional of the energy E[n(r)] can be defined in terms 
of the density n(r) , which is valid for any external potential Vext(r)

2nd theorem

The universal functional contains the individual contributions of
, , , and

Exc[n(r)]

kinetic energy classical Coulomb interaction

the non-classical exchange correlation energy 

Electron correlation, refers to all the effects that are missed when 
the electrons are treated as independent.



Kohn-Sham energy functional

• An essential feature of the theory is the exchange correlation energy Exc[n(r)].

• It maps the electron density function n(r) to the scalar energy Exc associated 
with all exchange and correlation effects. 

• An approximation to Exc[n(r)] is needed for practical work, and Kohn and Sham 
proposed useful approach.



Replace the original many-body problem with an auxiliary 
non-interacting reference system with the same density 
as the real, interacting one!

The exchange and correlation energy EXC contains everything that is unknown. 

Kohn-Sham energy functional
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Kohn-Sham equations

is the i-th single-electron wavefunction of a noninteracting 
electron system with the same density, n(r) as the interacting 
electron system of interest.
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It is tempting to treat these states as proper electronic states; 
but beware, this are fictitious states



Real interacting system:

External potential Vext(r)

Vij = e2/rij

y (r1, r2, ……); E[n(r)] 

Non-interacting system:

Effective potential Veff(r)

Vij = 0

yi (r) à neff(r) 

Minimize E[n(r)] with neff(r) by varying Veff(r)

Kohn-Sham formulation of DFT

3N-dimensional problem is reduced to a 3-dimensional one



Kohn-Sham equations

R. O. Jones, O. Gunnarsson, Reviews of Modern Physics, Vol. 61, No. 3, 1989
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DFT in practice: LDA approximation

The functional derivative defines a local 
potential that takes account of both 
exchange and correlation.

Unfortunately, Exc[n(r)], is unknown.
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So Kohn and Sham proposed a local density approximation (LDA) for Exc[n(r)], 
in which the exchange-correlation behavior of every tiny volume of an 
inhomogeneous system is taken to be the same as the behavior of a uniform 
electron gas with a density equal to the density of that volume.



DFT in practice: LDA approximation

time averaged
electron density

This is a system in which electrons move on a positive background charge 
distribution such that the total ensemble is neutral.



DFT in practice: LDA approximation

• LDA calculations yielded ground-state properties of solids to within 
1–10% of their experimental value

• This accuracy that LDA delivers was insufficient for most applications 
in chemistry

• LDA also failed in systems, like heavy fermions, dominated by 
electron-electron interaction effects



In the 1980s new approximation for Exc[n(r)] - called
generalized gradient approximation (GGA) were introduced.

It used not only the information about the density at a particular point
but also information about the gradient of the charge density, in order to 
account for the non-homogeneity of the true electron density.

GGA outperformed the LDA when applied to atoms, solids, and surfaces. 

DFT in practice: GGA approximation



DFT in practice: The self-consistency problem

Both the Coulomb energy and the exchange-correlation energy depend on 
the density n(r), which in turn depends on the !i , which are the solution of 
the Schrödinger equation (that we search for!).

This means that we are dealing with a self-consistency problem: the 
solutions !i determine the original equation (Veff), and the equation cannot 
be written down and solved before its solution is known.

An iterative procedure is the solution.



DFT in practice: The self-consistency loop

Start with initial guess (usually 
superposition of atomic densities  k=1)

Evaluate effective potential

Solve KS equations 
(for given potential)

Evaluate (construct) actual density

Compute energy, 
forces, stresses …
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DFT in practice

Commercial DFT software allow nonexperts with modest computational 
resources to perform calculations with great accuracy for many, if not all, 
systems of interest.

The program package WIEN2k allows to perform 
electronic structure calculations of solids using 
density functional theory (DFT).



Wien2k code: developed during the last 35 years 

• In the year 2000 (2k) the WIEN code (from Vienna) was called 

wien2k 

• One of the most accurate DFT codes for solids based on the full-

potential (linearized) augmented plane-wave ((L)APW) + local 

orbitals method

• All electron, relativistic, full-potential method 

Applications: 

• solids: insulators , covalently bonded systems, metals 

• surfaces: catalysis 

• electronic, magnetic, elastic , optical ,…properties 

• many application in literature 

Wien2k code



G.Madsen P.Blaha D.Kvasnicka K.Schwarz J.Luitz 

Wien2k is used worldwide by about 2600 groups 
See www.wien2k.at 

Wien2k code



DFT: applications in chemistry

Structure prediction and phase stability

Previously unknown ternary compounds were 
predicted by DFT to be thermodynamically stable 
and were later synthesized by experiment.

cubic

noncubic

cubic

noncubic

single phase

multiphase

R. Gautier et al., Nat. Chem. 7, 308 (2015), „Prediction 
and accelerated laboratory discovery of previously 
unknown 18-electron ABX compounds”

DFT calculations also predicted the correct 
optical properties for the compounds.



TiO2 atomic densities

for the valence bands.

TiO2 atomic densities

for the semi-core states.

K. Schwarz, P. Blaha and S. B. Trickey, Molecular Physics, Vol. 108, 

21–23, 2010, „Electronic structure of solids with WIEN2k”

TiO2 in the rutile structure

DFT: applications in solid state physics



Visualization of the Electric Field 
Gradient tensors at Fe(B - octahedral) 
sites in the elementary cell

DFT: applications in solid state physics



DFT: applications in solid state physics

Simulation of a zero-field 57Fe 
Mössbauer spectrum; 
comparison with experimental data

All features visible in experimental Mössbauer 
spectrum can be explained by the ab initio 
calculated electronic structure



1. Hohenberg-Kohn theorems
• All properties determined by electron density
• A functional can be defined the minimum of which 

yields the ground energy state

2. Kohn-Sham equations
• Replace fully interacting system with set of fictitious effective 

single-particle problems
• The exchange-correlation functional plays a key role
• Can be solve iteratively
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Summary



3. … yields total energies, forces, and electronic structure,
allows computing e.g.,

• Structural relaxation and phase stability

• Energy differences (input for thermodynamics, kinetics …)

• Phonon dispersions (mechanical stability)

• Property prediction and screening

• Band structures

Density functional theory (DFT)

Summary



4. … provides a reasonable balance between computational efficiency 
and accuracy (scales N3 or better, thousands of electrons, hundreds of 
atoms)

5. … has limitations e.g., with respect to
• Band gaps and optical properties
• Strongly correlated systems

Summary

Density functional theory (DFT)
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DFT Computation of Materials Properties
- introduction to Density Functional Theory


